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Abstract

We show that any subgraph of the hypercube Qn of average de-
gree d contains a geodesic of length d, where by geodesic we mean
a shortest path in Qn. This result, which is best possible, strength-
ens a theorem of Feder and Subi. It is also related to the ‘antipodal
colourings’ conjecture of Norine.

1 Introduction

Given a graph G of average degree d, a classic result of Dirac [3] guarantees
that G contains a path of length d. Moreover, for general graphs this is the
best possible bound, as can be seen by taking G to be Kd+1, the complete
graph on d+ 1 vertices.

The hypercube Qn has vertex set {0, 1}n and two vertices x, y ∈ Qn

are joined by an edge if they differ on a single coordinate. In [9] a similar
question was considered for subgraphs of the hypercube Qn. That is, given
a subgraph G of Qn of average degree d, how long a path must G contain?
The main result was the following:

Theorem 1.1 ([9]). Every subgraph G of Qn of minimum degree d contains
a path of length 2d − 1.

Combining Theorem 1.1 with the standard fact that any graph of average
degree d contains a subgraph with minimum degree at least d/2, we see that
any subgraph G of Qn with average degree d contains a path of length at
least 2d/2 − 1.
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In this paper we consider the analogous question for geodesics. A path
in Qn is a geodesic if it forms a shortest path in Qn between its endpoints.
Equivalently, a path is a geodesic if no two of its edges have the same
direction, where an edge xy ∈ E(Qn) is said to have direction i when x and
y differ in coordinate i. Given a subgraph G of Qn of average degree d, how
long a geodesic must G contain?

It is trivial to see that any such graph must contain a geodesic of length
d/2. Indeed, taking a subgraph G′ of G with minimal degree at least d/2
and starting from any vertex of G′, we can greedily pick a geodesic of length
d/2 by choosing a new edge direction at each step.

On the other hand the d-dimensional cube Qd shows that, in general,
we cannot find a geodesic of length greater than d in G. Our main result is
that this upper bound is sharp.

Theorem 1.2. Every subgraph G of Qn of average degree d contains a
geodesic of length at least d.

Since the endpoints of the geodesic in G guaranteed by Theorem 1.2 are
at Hamming distance at least d, Theorem 1.2 extends the following result
of Feder and Subi [4].

Theorem 1.3 ([4]). Every subgraph G of Qn of average degree d contains
two vertices at Hamming distance d apart.

We remark that neither Theorem 1.2 nor Theorem 1.3 follow from isoperi-
metric considerations alone. Indeed, if G is a subgraph of Qn of average
degree d, by the edge isoperimetric inequality for the cube ([1], [5], [6], [8];
see [2] for background) we have |G| ≥ 2d. However if n is large, a Hamming
ball of small radius may have size larger than 2d without containing a long
geodesic.

While Theorem 1.2 implies Theorem 1.3, we have also given an alternate
proof of Theorem 1.3 from a result of Katona [7] which we feel may be of
interest. The proofs of Theorems 1.2 and 1.3 are given in sections 2 and 3
respectively.

Finally, Feder and Subi’s theorem was motivated by a conjecture of
Norine [10] on antipodal colourings of the cube. In the last section of this
short paper we discuss Theorem 1.2 in relation to Norine’s conjecture.
Notation: Our notation is standard. Given a graph G, let |G| denote the
number of vertices of G and let E(G) denote the edge set of G. Given a
path P = x0 . . . xl, we say that P has length l and denote this by writing
|P | = l. Given a path P = x · · · y and a vertex z /∈ V (P ), we write Pyz to
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denote the path obtained by adjoining the edge yz to P . Given a set X, we
write P(X) for its power set and X(k) for the set of subsets of X of size k.
For n ∈ N, let [n] = {1, . . . , n}.

2 Proofs of Theorem 1.2 and Theorem 1.3

To prove Theorem 1.2 we will actually establish a stronger result. A path
P = x1x2 . . . xl in Qn is an increasing geodesic if the directions of the edges
xixi+1 increase with i. An increasing geodesic P ends at a vertex x if x = xl.
For any vertex x ∈ G we let LG(x) denote an increasing geodesic in G of
maximum length which ends at x. The key idea to the proof is to show that
on average |LG(x)| is large. This allows us to simultaneously keep track of
geodesics for all vertices of G, which is vital in the inductive proof below.

Theorem 2.1. Let G be a subgraph of Qn of average degree d. Then∑
v∈V (G)

|LG(v)| ≥ d|G|.

Proof. Write S(G) for
∑

v∈V (G) |LG(v)|. We will show that for any subgraph
G of Qn, we have S(G) ≥ 2|E(G)|, by induction on |E(G)|. The base case
|E(G)| = 0 is immediate. Assume the result holds by induction for all graphs
with |E(G)| − 1 edges and that we wish to prove the result for G.

Pick an edge e = xy of G with largest coordinate direction and look at
the graph G′ = G− e. By the induction hypothesis, we have

S(G′) =
∑

v∈V (G′)

|LG′(v)| ≥ 2|E(G′)| = 2(|E(G)| − 1).

Now clearly we must have |LG(v)| ≥ |LG′(v)| for all vertices v ∈ G. Fur-
thermore, notice that the coordinate direction of e cannot appear on the
increasing geodesics LG′(x) and LG′(y). Indeed, the edge of LG′(x) adja-
cent to x has direction less than e and as LG′(x) is an increasing geodesic,
the directions of all edges in LG′(x) must be less than e. We now consider
two cases:

Case I: |LG′(x)| = |LG′(y)|. Then the paths LG′(x)xy and LG′(y)yx
are increasing geodesics in G ending at y and x respectively. Therefore
|LG(x)| ≥ |LG′(x)|+ 1 and |LG(y)| ≥ |LG′(y)|+ 1 and S(G) ≥ S(G′) + 2 ≥
2|E(G′)|+ 2 = 2|E(G)|.

Case II: |LG′(x)| 6= |LG′(y)|. Without loss of generality assume that
|LG′(x)| ≥ |LG′(y)|+ 1. Then LG′(x)xy is an increasing geodesic ending at
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y of length |LG′(x)|+1 ≥ |LG′(y)|+2. Therefore |LG(y)| ≥ |LG′(y)|+2 and
S(G) ≥ S(G′) + 2 ≥ 2|E(G′)|+ 2 = 2|E(G)|.

This concludes the inductive step and the proof.

Note that it is immediate from Theorem 2.1 that |LG(v)| ≥ d for some
v ∈ V (G) and therefore, G contains an increasing geodesic of length at least
d, as claimed in Theorem 1.2.

We now give a strengthening of Theorem 2.1, showing that G must
actually contain many geodesics of length d. First note that for d ∈ N,
taking a disjoint union of subgraphs isomorphic to Qd gives a graph G with
average degree d and exactly d!|G|/2 geodesics of length d. Indeed, suppose
G = ∪iGi where Gi are disjoint and isomorphic to Qd for all i. Then
any vertex in Gi is a starting vertex for d! geodesics of length d. This gives∑

i d!|Gi|/2 = d!|G|/2 geodesics in total. The following result proves that we
can in fact guarantee this many geodesics of length d for general subgraphs
of Qn.

Theorem 2.2. If G is a subgraph of Qn with average degree at least d, then
G contains at least d!|G|/2 geodesics of length d.

Proof. We first use Theorem 2.1 to prove the following claim: G contains
at least |G| increasing geodesics of length d. To see this, first remove an
edge e from G if it lies in at least two increasing geodesics of length d.
Now repeat this with G \ {e} and so on until we end up at a subgraph G′

of G in which, all edges lie in at most one increasing geodesic of length
d. Let |E(G)| = |E(G′)| + a. Note that, by our removal process, the a
edges removed from G remove at least 2a increasing geodesics of length d.
Therefore, if a ≥ |G|/2, then G contains at least |G| increasing geodesics of
length d. If not, by Theorem 2.1, we have∑
v∈V (G′)

|LG′(v)| ≥ 2|E(G′)| = 2|E(G)|−2a ≥ d|G|−2a = (d−1)|G|+(|G|−2a).

(1)
Now note that since no edge of G′ is contained in more than one increasing
geodesic of length d, G′ does not contain any increasing geodesics of length
d + 1. Therefore |LG′(v)| ≤ d for all v ∈ G′. By (1), this shows that
|LG′(v)| = d for at least |G| − 2a vertices v ∈ G′. Combining these with
the increasing geodesics of length d containing edges from G\G′, this shows
that G contains at least 2a+ (|G| − 2a) = |G| increasing geodesics of length
d, as claimed.

Now suppose that G contain L geodesics of length d. We will show that
L ≥ d!|G|/2. To see this, pick an ordering σ of {1, . . . , n} uniformly at
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random and consider the geodesics of length d which are increasing with
respect to this ordering (i.e. paths in which the edges have directions
σ(i1), σ(i2), . . . , σ(id) where i1 < i2 < . . . < id). The probability that a
fixed geodesic of length d appears as an increasing geodesic with respect to
the ordering σ is exactly 2/d!. Taking X to be the random variable which
counts the number of increasing geodesics of length d in G (with respect to
the ordering σ), this gives that

E(X) =
2L

d!
.

But by the claim above, X ≥ |G| for each choice of σ. Therefore L ≥ d!|G|/2,
as required.

3 A proof of Theorem 1.3 using Set Systems

In this section, we give an alternate proof of Theorem 1.3. Note that it is
enough to prove this theorem for induced subgraphs of Qn, since if the result
fails for some graph G, it must also fail for the induced subgraph of Qn on
vertex set V (G).

As in [4], the following compression operation allows us a further re-
duction. Here we view the vertices of Qn as elements of P[n], the power
set of [n]. Then two sets A,B ∈ P[n] are adjacent if |A4B| = 1 where
A4B = (A \B) ∪ (B \A). Given A ∈ P[n] and i ∈ {1, . . . , n}, let

Ci(A) =
{ A− i if i ∈ A;
A if i /∈ A.

Given A ⊂ P[n], Ci(A) := {Ci(A) : A ∈ A} ∪ {A : Ci(A) ∈ A}, the
down compression of A in the i-direction. A family A is said to be a down-
compressed if Ci(A) = A for all i ∈ [n]. The following lemma shows that
we may also assume that the vertex set V (G) is a down-compressed.

Lemma 3.1. Let G be an induced subgraph of Qn on vertex set A ⊂ P[n]
and let i ∈ {1, . . . , n}. Suppose that G has average degree at least d and all
vertices A and B of G are at Hamming distance less than k. Then the same
is true for the induced subgraph G′ of Qn with vertex set Ci(A).

Proof. Since |G| = |G′| in both cases, to see that G′ has average degree at
least d it suffices to show that G′ has at least as many edges as G. To see
this, define a map f : E(G)→ E(G′) given by

f(AB) =

{
Ci(A)Ci(B) if A∆B 6= {i} and Ci(A)Ci(B) /∈ E(G);
AB otherwise.
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Noting that f is an injection, it follows that G′ has average degree at least
d.

Suppose for contradiction that G′ had two vertices A′ and B′ at Ham-
ming distance at least k apart. Now it is easily seen that exactly one of
A′ and B′ must contain i as otherwise any pair A,B ∈ A with Ci(A) = A′

and Ci(B) = B′ are at Hamming distance at least k apart. Assume that
i ∈ A′, i /∈ B′. Now A′ ∈ Ci(A) implies that A′ − i, A′ ∈ A. Since A′ ∈ A,
B′ /∈ A and we have B′ ∈ Ci(A)\A. This implies B′ ∪ {i} ∈ A. But then
A′ − i, B′ ∪ {i} ∈ A are at Hamming distance at least k, a contradiction.

Our alternate proof of Theorem 1.3 is based on a theorem of Katona.
Given a set system A ⊂ [n](k), the shadow of A is the set

∂(A) := {B ∈ [n](k−1) : B ⊂ A for some A ∈ A}.

The set ∂(l)(A) is defined as ∂(l)(A) := ∂(· · · (∂(A)) · · · ), where ∂ is applied
l times.

While, in general, the shadow ∂A of A ⊂ P[n] can be much smaller than
|A|, a result of Katona [7] shows that if A is also an intersecting family
(A ∩ B 6= ∅ for all A,B ∈ A), then |∂(A)| ≥ |A|. More generally, Katona
also gave lower bounds on the size of |∂(l)(A)| for t-intersecting families A.
We will need the following special case.

Theorem 3.2 (Katona). Let k, t ∈ N. Suppose that A ⊂ [n](k) is t-
intersecting. Then

|∂(t)(A)| ≥ |A|.

Proof of Theorem 1.3. Suppose for contradiction the result is false and let
A be the vertex set of G. Using Lemma 3.1 we may assume that A is
down-compressed.

Let A(k) = A ∩ [n](k) for all k ∈ [n] ∪ {0}. Since A is down-compressed
we must have A(k) = ∅ for all k ≥ d. Also, since A is down-compressed, for
each A ∈ A, the number of neighbours of A which lie below A in G is |A|.
Therefore

dde−1∑
k=0

k|A(k)| =
∑
A∈A
|A| = d|A|

2
. (2)

6



Furthermore, again by compression, for k ≥ d/2, the set A(k) does not
contain two vertices A and B with |A ∪ B| ≥ d. Therefore, A(k) must be
(2k − dde+ 1)-intersecting. Applying Theorem 3.2 we therefore have

|∂(2k−dde+1)(A(k))| ≥ |A(k)|. (3)

But as A is down-compressed

∂(2k−dde+1)(A(k)) ⊂ A(dde−k−1).

We now pair the contributions from A(k) and A(dde−k−1) to (2) together for
all k ≥ (dde − 1)/2 using (3):

k|A(k)|+ (dde − k − 1)|A(dde−k−1)| = (
dde − 1

2
)|A(k)|+

(
k − dde − 1

2

)
|A(k)|

+(
dde − 1

2
)|A(dde−k−1)|

+(
dde − 1

2
− k)|A(dde−k−1)|

≤ dde − 1

2

(
|A(k)|+ |A(dde−k−1)|

)
.

But summing over k ≥ (dde − 1)/2, this contradicts (2) above. This proves
the theorem.

4 Antipodal colourings

We now discuss the relation of Theorem 1.2 with Norine’s conjecture (see
[10]) mentioned in the Introduction. Given a vertex x ∈ Qn, its antipodal
vertex x′ ∈ Qn is the unique vertex with all coordinate entries differing from
those of x. Also, given an edge e = xy of Qn, its antipodal edge e′ = x′y′

where x′ is antipodal to x and y′ is antipodal to y. Finally, a 2-colouring of
the edges of Qn is said to be antipodal if no two antipodal edges receive the
same colour.

Conjecture 4.1 (Norine). For n ≥ 2, any antipodal colouring of E(Qn)
contains a monochromatic path between some pair of antipodal vertices.

Note that this is not true for general 2-colourings of E(Qn), as can be
seen by colouring all edges in directions {1, . . . n − 1} red, and edges in
direction n blue. In [4], Feder and Subi made the following conjecture for
general 2-colourings of E(Qn):
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Conjecture 4.2 (Feder-Subi). Every 2-colouring of E(Qn) contains a path
between some pair of antipodal vertices which changes colour at most once.

It is easily seen that if Conjecture 4.2 is true, it implies Norine’s conjec-
ture. Indeed, given an antipodal colouring ofQn, take the path P guaranteed
by Conjecture 4.2 between two antipodal vertices in Qn. Combining P with
its antipodal path PA (consisting of all edges x′y′ where xy is an edge of
P ) then gives that some two antipodal vertices on the cycle PPA must be
joined by a monochromatic path.

In [4], Feder and Subi proved that every 2-colouring of E(Qn) contains
a monochromatic path between two vertices at (Hamming) distance dn/2e.
Using Theorem 1.2 in place of Theorem 1.3, the following shows that we can
actually take this path to be a geodesic.

Corollary 4.3. In every 2-colouring c of E(Qn) there exists a monochro-
matic geodesic of length dn/2e.

Proof. Pick a monochromatic connected component C of the colouring with
average degree at least n/2 and apply Theorem 1.2 to it.

This suggests that in both of the conjectures above, one can additionally
ask for the path between antipodal vertices to be a geodesic.

Conjecture 4.4. The following statements hold:

A Every antipodal colouring c of E(Qn) contains a monochromatic geodesic
between some pair of antipodal vertices.

B In every 2-colouring c of E(Qn), there is a geodesic between some pair
of antipodal vertices which changes colour at most once.

Unfortunately we were not able to settle either of these conjectures. In
fact, surprisingly, we were not even able to establish that in every 2-colouring
of E(Qn) some two antipodal vertices are joined by a path which changes
colour o(n) times. Is this true?

Question 4.5. Is it true that for every 2-colouring of E(Qn), there exist
two antipodal vertices x and x′ that are joined by a path that changes colour
o(n) times?

While we were not able to prove either statement A or statement B, our
final result shows that they are equivalent.
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Proposition 4.6. Statement A holds for all n if and only if statement B
holds for all n.

Proof. First assume that statement A is true and let c be a 2-colouring of
E(Qn). View Qn as the subcube of Qn+1 consisting of all 0 − 1 vectors of
length n+1, (x1, x2, . . . , xn+1) with xn+1 = 0. Pick any antipodal colouring
c′ of E(Qn+1) which agrees with c on E(Qn). Statement A now guarantees
c′ has a monochromatic geodesic P between two antipodal vertices of Qn+1.
Let PA denote the geodesic formed by the edges antipodal to P . Since c′

is antipodal, PA must also be monochromatic and of opposite colour to P .
The restriction of the cycle PPA to our original subcube Qn now gives a
geodesic between two antipodal vertices (in Qn) which changes colour at
most once, i.e. statement B is true.

Now assume that statement B is true and let c be an antipodal 2-
colouring of E(Qn). Applying statement B to c we obtain a geodesic P
between two antipodal vertices which changes colour at most once. Let
P = PrPb where Pr is a red geodesic and Pb is a blue geodesic. But since
c is antipodal PA

r is a blue geodesic and PbP
A
r is a blue geodesic between

antipodal vertices, i.e. statement A is true.
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